




### Context

- Solar farm developers need to make a first assessment of solar resource in order to identify suitable sites.
- Time series of solar data are necessary to produce solar resource assessment reports that are requested by bankers to finance a solar plant
- Copernicus Atmosphere Monitoring Service is useful to do that.
- This assessment is based on several years of solar radiation data.
- Developers analyze the time series data to:
  - Assess daytime, inter-monthly and inter-yearly variabilities.
  - Compare several candidate sites
  - Produce solar resource assessment reports
  - Compare with measurements and assess accuracy











- This submodule describes how to access solar data from the CAMS Total-Sky Surface Solar Irradiation service.
- This service delivers time series of irradiation:
  - Global, Direct and Diffuse Irradiations on horizontal surface;
  - Direct Irradiation on normal plane (DNI);
  - Cloudy and Clear-sky conditions;
  - Time step ranging from 1 min to 1 month;
  - Data are available from Jan. 2004 up to current day -2.







## Hands-on demo

- Go to CAMS catalogue (http://atmosphere.copernicus.eu/catalogue#/)
- Select Solar radiation.
- Choose Total-sky surface solar irradiation.
- Login or register to access the solar radiation service (<a href="http://www.soda-pro.com/webservices/radiation/cams-radiation-service">http://www.soda-pro.com/webservices/radiation/cams-radiation-service</a>)
- Choose location on map
- Extract 10 years of data and save it as csv file
- Using MS excel/OpenOffice:
  - aggregate the data on yearly base
  - Calculate the yearly and monthly means
  - build the corresponding inter-monthly and inter-yearly variabilities
  - build the daytime variability



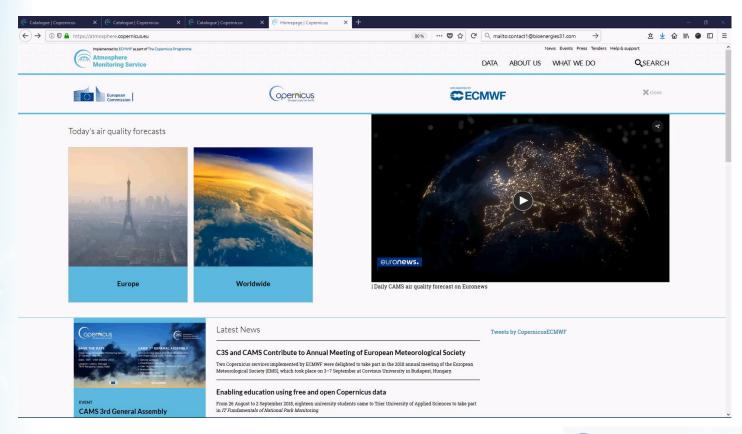




#### Global Clear-Sky Surface Solar irradiance

- Atmosphere Monitoring
- Video 1 :
  - Access service and download data
- Video 2 :
  - Analyse data in Excel










## Video 1: Access CAMS service

Atmosphere Monitoring









# Video 2 : Data Analysis in Excel

Atmosphere Monitoring

| d                       | A                                | В                    | C                | D            | E             | F             | G            | H             | 1            | J            | K             | L             | M            | N            | 0 | P | Q | R | S | T |
|-------------------------|----------------------------------|----------------------|------------------|--------------|---------------|---------------|--------------|---------------|--------------|--------------|---------------|---------------|--------------|--------------|---|---|---|---|---|---|
| # Coding: utf-8         |                                  |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # File format version   | n: 2                             |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #Title: CAMS Radiat     | ion Service v3.2 all-sky irradia | ation (derived fron  | n satellite data | ).           |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #Content: A time-s      | eries of solar radiation receiv  | ed on horizontal p   | lane and plane   | always non   | mal to the si | un rays at gr | ound level.  |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # Returns the g         | lobal, beam and diffuse irrad    | iations integrated   | over a selected  | time step,   |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # for a selected        | location (Meteosat Second G      | eneration satellite  | e coverage) and  | d a selected | period.       |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #The research leadi     | ng to these results has receiv   | ed funding from th   | ne European Un   | nion within  | the Coperni   | cus program   | me.          |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # Provider: MINES P.    | arisTech (France)                |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # More information      | at: http://www.soda-pro.con      | n/web-services/rai   | diation/cams-ra  | adiation-ser | rvice         |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # Date begin (ISO 86    | 01): 2017-01-01T00:00:00.0       |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # Date end (ISO 860)    | L): 2018-01-01T00:00:00.0        |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # Latitude (positive    | North, ISO 19115): 59.8305       |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #Longitude (positiv     | e East, ISO 19115): 10.6574      |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # # Altitude (m): 198.0 | 00                               |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #Time reference: U      | niversal time (UT)               |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #                       |                                  |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # Encoding partly fro   | om D2.8.III.13-14 INSPIRE Data   | Specification on A   | Atmospheric Co   | nditions an  | d Meteorolo   | ogical Geogra | phical Featu | res - Technic | I Guidelines | (2013-12-10) | and CF (Clima | te and Foreca | st) metadata | (2013-11-11) |   |   |   |   |   |   |
| # CF Standard Name      | s registry of ObservablePrope    | ertyValue            |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # http://cfconventio    | ns.org/Data/cf-standard-nam      | nes/27/build/cf-sta  | andard-name-ta   | able.html    |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # urn:x-inspire:spec    | ification:DS-AC-MF:observab      | le-property-name:    | cf-standard-na   | me:1.6       |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| 1 # ObservableProper    | ty                               |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| 2 # basePhenomeno       | on:"integral_of_surface_down     | nwelling_shortway    | e_flux_in_air_   | sky_wrt_tin  | ne"           |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # uom:"Wh m-2" [        | unit]                            |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # StatisticalMeasure    |                                  |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # statisticalFunction   | on: "sum"                        |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # Summarization (in     | tegration) period: 0 year 0 mo   | onth 0 day 1 h 0 mir | n 0 s            |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| 7 # noValue: nan        |                                  |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| 3 #                     |                                  |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| 9 # Columns:            |                                  |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #1. Observation per     | riod (ISO 8601)                  |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # 2. TOA. Irradiation   | on horizontal plane at the to    | p of atmosphere (\   | Nh/m2)           |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # 3. Clear sky GHI. Cl  | ear sky global irradiation on h  | orizontal plane at   | ground level (\  | Wh/m2)       |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #4. Clear sky BHI. Cl   | ear sky beam irradiation on h    | orizontal plane at   | ground level (V  | Vh/m2)       |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # 5. Clear sky DHI. Cl  | ear sky diffuse irradiation on   | horizontal plane a   | t ground level ( | (Wh/m2)      |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #6. Clear sky BNI. Cl   | ear sky beam irradiation on n    | nobile plane follow  | ving the sun at  | normal inci- | dence (Wh/    | m2)           |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #7. GHI. Global irrad   | diation on horizontal plane at   | ground level (Wh,    | /m2)             |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #8. BHI. Beam irradi    | ation on horizontal plane at g   | round level (Wh/r    | m2)              |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| # 9. DHI. Diffuse irra  | diation on horizontal plane at   | ground level (Wh     | /m2)             |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #10. BNI. Beam irrad    | liation on mobile plane follow   | ving the sun at nor  | mal incidence    | (Wh/m2)      |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #11. Reliability. Prop  | portion of reliable data in the  | summarization (0-    | -1)              |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |
| #                       |                                  |                      |                  |              |               |               |              |               |              |              |               |               |              |              |   |   |   |   |   |   |



